Nitroglycerin Improves Microcirculation During and After Cardiopulmonary Resuscitation in a Porcine Model of Cardiac Arrest


1Weil Institute of Emergency and Critical Care Research at VCU, VA; 2Department of Internal Medicine and Emergency Medicine, VCU, VA; 3Department of Emergency Medicine, VCU, VA; 4Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; 5Department of Emergency Medicine, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China

Introduction
We have previously demonstrated that vasopressors administered during cardiopulmonary resuscitation (CPR) decrease microcirculatory flow. The beneficial effects of nitroglycerin have been evaluated in multiple studies observing effects in conjunction with epinephrine. In the present study, we investigated the effects of nitroglycerin on the macro and microcirculation during and after CPR in a porcine model of cardiac arrest (CA). We hypothesized nitroglycerin improves microcirculation without undesirable effects on the macrocirculation during and after cardiopulmonary resuscitation.

Methods
Ten male domestic pigs weighing 40±2 kg were utilized. Ventricular fibrillation was electrically induced and untreated for 5 min. The animals were then randomized to receive NTG (N group) or saline (C group). Coincident with the start of CPR, NTG (5 μg/kg) or saline was administrated into the right atrium. Defibrillation was attempted by a single 150 J shock after 5 min of CPR. Hemodynamics were recorded continuously and sublingual microcirculation was assessed with the orthogonal polarisation spectral (OPS) at baseline (BL), 1, 5 min of CPR and 1, 5 min after resuscitation.

Results
Figure 1. Hemodynamic changes during CPR.

<table>
<thead>
<tr>
<th>Time</th>
<th>DpCO₂</th>
<th>ETCO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>BL</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>PC 1min</td>
<td>25</td>
<td>35</td>
</tr>
<tr>
<td>PC 5min</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>PR 1min</td>
<td>15</td>
<td>25</td>
</tr>
<tr>
<td>PR 5min</td>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

CPP, coronary perfusion pressure; ETCO₂, end-tidal carbon dioxide; C group, control group; N group, administration of nitroglycerin at the onset of CPR

Figure 2. Sublingual microcirculation changes during CPR.

Bl, baseline; Vf, ventricular fibrillation; CPR, cardiopulmonary resuscitation; MFI, microcirculatory flow index; PVD, perfused vessel density; C group, control group; N group, administration of nitroglycerin at the onset of CPR

Conclusion
Administration of nitroglycerin at the onset of CPR improves microcirculation without undesirable effects on macrocirculation during and after cardiopulmonary resuscitation.

References

Disclosure
None